Exercise 7.2.15

In the linear homogeneous differential equation

$$
\frac{d v}{d t}=-a v
$$

the variables are separable. When the variables are separated, the equation is exact. Solve this differential equation subject to $v(0)=v_{0}$ by the following three methods:
(a) Separating variables and integrating.
(b) Treating the separated variable equation as exact.
(c) Using the result for a linear homogeneous differential equation.

ANS. $v(t)=v_{0} e^{-a t}$.

Solution

Method (a)

Separate variables in the ODE.

$$
\frac{d v}{v}=-a d t
$$

Integrate both sides.

$$
\int \frac{d v}{v}=\int-a d t
$$

Evaluate the integrals.

$$
\ln |v|=-a t+C
$$

Exponentiate both sides.

$$
\begin{aligned}
|v| & =e^{-a t+C} \\
& =e^{-a t} e^{C}
\end{aligned}
$$

Remove the absolute value sign on the left by placing \pm on the right side.

$$
v(t)= \pm e^{C} e^{-a t}
$$

Use a new constant A for $\pm e^{C}$.

$$
v(t)=A e^{-a t}
$$

Apply the initial condition $v(0)=v_{0}$ to determine A.

$$
\begin{gathered}
v(0)=A e^{-a(0)} \\
v_{0}=A
\end{gathered}
$$

Therefore,

$$
v(t)=v_{0} e^{-a t} .
$$

Method (b)

Consider the separated variable equation in the previous part.

$$
\frac{d v}{v}=-a d t
$$

Bring $a d t$ to the left side.

$$
\begin{equation*}
\frac{d v}{v}+a d t=0 \tag{1}
\end{equation*}
$$

Since the ODE is exact, that is,

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\frac{1}{v}\right) & =\frac{\partial}{\partial v}(a) \\
0 & =0
\end{aligned}
$$

there exists a potential function $\varphi=\varphi(x, t)$ that satisfies

$$
\begin{align*}
& \frac{\partial \varphi}{\partial v}=\frac{1}{v} \tag{2}\\
& \frac{\partial \varphi}{\partial t}=a . \tag{3}
\end{align*}
$$

In terms of it, equation (1) becomes

$$
\frac{\partial \varphi}{\partial v} d v+\frac{\partial \varphi}{\partial t} d t=0
$$

On the left is how the differential of φ is defined.

$$
d \varphi=0
$$

Integrate both sides.

$$
\varphi(x, t)=C_{1}
$$

The solution to the ODE is found then by solving equations (2) and (3) for φ. Integrate both sides of equation (2) partially with respect to t.

$$
\varphi(x, t)=a t+f(v)
$$

Differentiate it with respect to v.

$$
\frac{\partial \varphi}{\partial v}=f^{\prime}(v)
$$

Comparing this to equation (1), we see that

$$
f^{\prime}(v)=\frac{1}{v} .
$$

Integrate both sides with respect to v.

$$
f(v)=\ln |v|+C_{2}
$$

Consequently, the potential function is

$$
\varphi(x, t)=a t+\ln |v|+C_{2},
$$

and the solution is

$$
a t+\ln v+C_{2}=C_{1} \quad \rightarrow \quad a t+\ln |v|=C_{3},
$$

where a new constant C_{3} is used for $C_{1}-C_{2}$. Solve for v.

$$
\ln |v|=C_{3}-a t
$$

Exponentiate both sides.

$$
\begin{aligned}
|v| & =e^{C_{3}-a t} \\
& =e^{C_{3}} e^{-a t}
\end{aligned}
$$

Remove the absolute value sign by placing \pm on the right side.

$$
v(t)= \pm e^{C_{3}} e^{-a t}
$$

Use a new constant C_{4} for $\pm e^{C_{3}}$.

$$
v(t)=C_{4} e^{-a t}
$$

Now apply the initial condition $v(0)=v_{0}$ to determine C_{4}.

$$
v(0)=C_{4} e^{-a(0)} \quad \rightarrow \quad v_{0}=C_{4}
$$

Therefore,

$$
v(t)=v_{0} e^{-a t} .
$$

Method (c)

Bring $a v$ to the left side.

$$
\frac{d v}{d t}+a v=0
$$

This is a linear first-order ODE for v, so it can be solved by multiplying both sides by an integrating factor I.

$$
I=\exp \left(\int^{t} a d s\right)=e^{a t}
$$

Proceed with the multiplication.

$$
e^{a t} \frac{d v}{d t}+a e^{a t} v=0
$$

The left side can be written as $d / d t(I v)$ by the product rule.

$$
\frac{d}{d t}\left(e^{a t} v\right)=0
$$

Integrate both sides with respect to t.

$$
e^{a t} v=C_{5}
$$

Divide both sides by $e^{a t}$.

$$
v(t)=C_{5} e^{-a t}
$$

Apply the initial condition $v(0)=v_{0}$ to determine C_{5}.

$$
\begin{gathered}
v(0)=C_{5} e^{-a(0)} \\
v_{0}=C_{5}
\end{gathered}
$$

Therefore,

$$
v(t)=v_{0} e^{-a t} .
$$

